Diagnosis of Severe Obstructive Sleep Apnea with Model Designed Using Genetic Algorithm and Ensemble Support Vector Machine

نویسندگان

  • Liang-Wen Hang
  • Hsuan-Hung Lin
  • Hsiang-Ling Wang
چکیده

Obstructive sleep apnea (OSA) is a general sleep disorder and is a significant cause of motor vehicle crashes and chronic diseases. The severity of the respiratory events is measured by the frequency and duration of apneas and hypopneas per hour of sleep, namely apnea-hypopnea index (AHI), using polysomnography (PSG). Suspected patients can be classified as normal (AHI<5), mild (5AHI<15), moderate (15AHI<30), and severe (AHI30). Although PSG is treated as the gold standard for the diagnosis of OSA, its shortcoming includes technical expertise is required and timely access is restricted. Thus, home pulse oximetry has been proposed as a valuable and effective tool for screening patients with OSA. Support vector machine (SVM) is believed to be more efficient than neural network and traditional statistical-based classifiers. Nonetheless, it is critical to determine suitable parameters to increase classification performance. Furthermore, an ensemble of SVM classifiers use multiple models to obtain better predictive accuracy and are more stable than models consist of a single model. Genetic algorithm (GA), on the other hand, is able to find optimal solution within an acceptable time, and is faster than dynamic programming with exhaustive searching strategy. By taking the advantage of GA in quickly selecting the salient features and adjusting SVM parameters, it was combined with ensemble SVM to design a clinical decision support system (CDSS) for the diagnosis of patients with severe OSA, and then followed by PSG to further discriminate normal, mild and moderate patients. The results show that ensemble SVM classifiers demonstrate better diagnosing performance than models consisting of a single SVM model and logistic regression analysis. Additionally, the oximetry/PSG diagnostic scheme was shown to have higher costeffectiveness in the diagnosis of OSA patients with an average cost ratio of 0.66 and an average waiting time ratio of 0.40 compared to the traditional scheme with PSG examination only.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines

The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...

متن کامل

Diagnosis of sleep Apnea disease with ECG, SPO2 through using of support vector machine (SVM)

The aim of this article is to present new method on the basis of support vector machine (SVM) in order to diagnose obstructive sleep Apnea through features of ECG SPO signals. For achieving our aim, we consider two parameters signal namely, the rate of oxygen concentration in blood and relative pressure of blood circulation. Then, we designed support vector machine (SVM) in Matlab environment a...

متن کامل

Application of ensemble learning techniques to model the atmospheric concentration of SO2

In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...

متن کامل

Heart Rate Variability Classification using Support Vector Machine and Genetic Algorithm

Background: Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.Objective: In this study, we aimed to evaluate the efficiency of discrete wavelet transfo...

متن کامل

Application of Genetic Algorithm Based Support Vector Machine Model in Second Virial Coefficient Prediction of Pure Compounds

In this work, a Genetic Algorithm boosted Least Square Support Vector Machine model by a set of linear equations instead of a quadratic program, which is improved version of Support Vector Machine model, was used for estimation of 98 pure compounds second virial coefficient. Compounds were classified to the different groups. Finest parameters were obtained by Genetic Algorithm method ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012